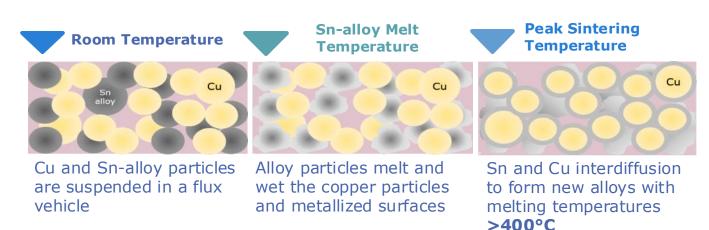
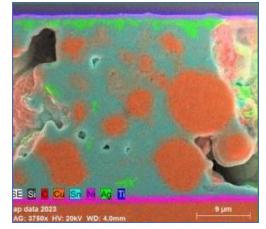

Ormet TLPS Introduction

Portfolio and application roadmap

Catherine Gallagher AI Technology cgallagher@aitechnology.com




What we make: Transient Liquid Phase Sintering: Ormet® TLPS

- Electrical, thermal and mechanical characteristics like solder
- Does not remelt like solder multiple assembly steps can be accomplished with the same paste formulation

2 Ormet TLPS Portfolio | December 2024

Packaging interconnect solutions

Key benefits of TLPS (Transient Liquid Phase Sintering)pastes

Ormet[®] TLPS sintering paste provides enabling materials technology

- Low temperature **metallic joining**
- Thermally stable metallurgy after reflow
- Superior strength retention at elevated temperatures

Pb-free & Halogen-free composition

Excellent electrical and thermal conductivity Processing in standard **Pb-free reflow** profile

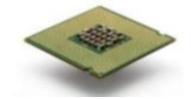
Improved fatigue resistance relative to solder

No re-melt below 400°C – high operating temp capability

Copper and tin-based alloys

<100 μΩ/cm **electrical** 25-60 W/mK **thermal**

Competitive landscape


	Feature	Conductive Adhesives	Solder Paste	Ormet® TLPS-Paste	Ag-sintering
	Process Temperature	120-175℃	190-350°C	190-260 ℃	200-280° ℃
	Bonding Mechanism	Adhesive(Chemical bond)	Metallurgical	Metallurgical	Metallurgical
	Reaction Process	Box oven	In-line reflow	In-line reflow / Box oven	Thermal compression
General	Sintering pressure	0MPa	0MPa	0MPa	10~30MPa
Property	Thermal conductivity (W/m.K)	<10	20-60	20-60	>100
	Electric Resistivity (μΩ.cm)	<100	10-30	10-50	<10
	Flux Residue	No	Yes	No	No
	Will Re-Melt in 2 nd Reflow?	No (Tg)	Yes	Νο	No
	Power die attach	\checkmark	\checkmark	\checkmark	\checkmark
	Component manufacture		\checkmark	\checkmark	
	Component attach		\checkmark	\checkmark	
	BGA attach		\checkmark	\checkmark	
	PCB Z-axis interconnects	\checkmark		√	

TLPS pastes are a versatile technology platform

Strong value proposition in HDI PCB, complex assemblies and harsh environment

Advanced Packaging Assembly(SiP)

- Replace lead-free solder

- Multiple assembly cycles with no remelt
- Superior fatigue resistance

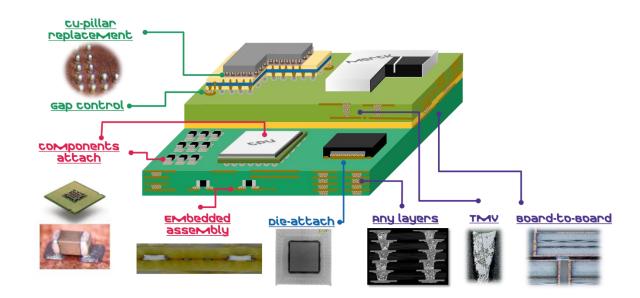
• Replace Ag-sinter, solder, TIM

Power/harsh environment Assemblies

- High thermal durability
- Multiple assembly cycles with no remelt

• Replace/augment copper-plating

5G (Antenna/Sever)



interconnects

Z-axis

- Paste + novel process
- Enable complex PCB in high yield

Market overview Focus areas for TLPS paste

Where?

5G mm Wave infrastructure Substrate with embedded power management

Military telecom and radar infrastructure

CPU test and server motherboard

Why?

Higher density, tighter pitch Higher yield Faster throughput – lower energy, waste Better RF performance Improved design flexibility

Where?

Fine pitch assembly for semi packaging and modules

Passive component embedding in PCBs

Power assembly solutions for EV, solar, IoT and sensor applications

Why?

No remelt in complex module assemblies Small component/pitch capability Superior fatigue resistance

Die/component/lead frame assembly with a single material and reflow

High operating temperature capability

Component fabrication

Where?

Stacked capacitors for power management

Leaded

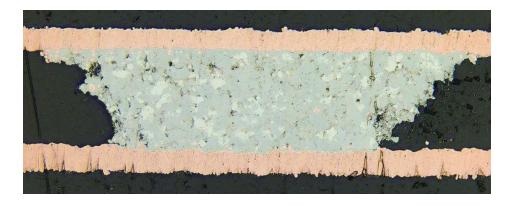
Leadless

PCB-mounted fuses

Why?

Unique architecture = higher power density and superior thermal dissipation

No remelt


High operating temperature capability

TLPS for Z-axis interconnect

Ørmet TLPS Portfolio | December 2024

High layer count PCBs Z-axis interconnects Uses, drivers, and advantages

Design Flexibility for higher density

• Ormet pastes eliminate complex drilling and plating processes,

Production yield improvement by process steps reduction

 leading to improved yield compared to conventional build-up plating processing

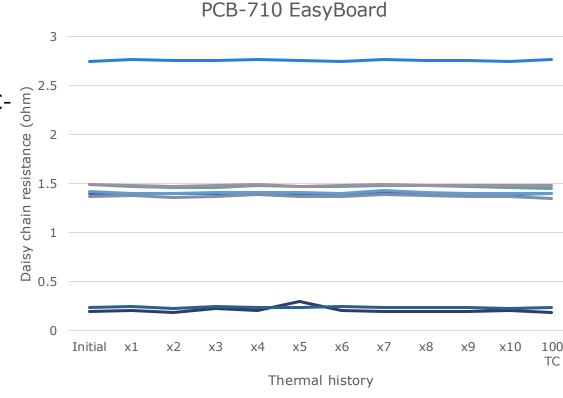
Higher Aspect-ratio through holes

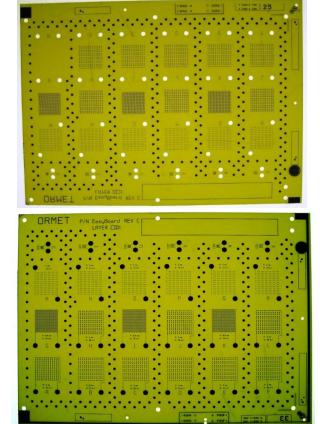
- Manufacture subassembly 'cores'
- Interconnect using paste via layers
- Proven reliability and good yield
- Simplified process leads to lower cost

Better performance, shorter cycle time and higher yield than conventional technology for complex substrates

PCB Z-axis interconnect product line **Robust interconnect with high design flexibility**

Typical Properties			PCB-701	PCB-710	PCB-805
P	Product Design for		Via Filling Paste	Via Filling Paste	Thermal drain (PTH only)
	Filler type		Cu and Sn-alloy	Cu and Sn-alloy	Cu & Sn-alloy
	Nominal Particle Size	um	<20	<20	<20
Pre Sintered	Viscosity @ 5rpm	kcps	135 Brookfield TE Spindle	380 Brookfield TE spindle	450 Brookfield TE Spindle
	Thixotropic Index	slope 1:10rpm	1.4	3.5	5
	Work Life @ 25°C	Hours	>4	>4	8
	Storage Life <- 10℃	Months	12	12	12
Post Sintered	Metal Loading	Wt %	92	98	96
	Volume Resistivity	uΩ.cm	50	35	30
	СТЕ	ppm/°C	22	19	19
	Thermal Conductivity	W/m.K			50

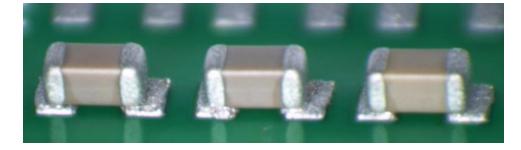

Ormet PCB-710


Resistance stability: reflow and thermal shock

Electrical results:

- As laminated
- After each 260C peak SACtype reflow (tunnel furnace)
- After 100 -65C -> 150C air-to-air thermal shocks
- Resistance increases at peak temperature, but does not go open

High Reliability!


Circuit index (pitch and pad size vary per circuit):

A, B – 250µm, 169 vias M, N - 150µm, 169 vias G, H - 200µm, 900/169 vias S, T - 100µm, 64 vias

Component Assembly

Solder replacement for complex assemblies and harsh conditions Solving re-melt, fine pitch placement and fatigue resistance issues

Processable like Pb-free solder

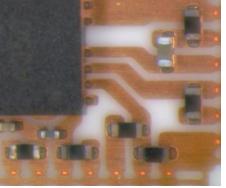
- Lead-free reflow with inert environment
- Dispense or stencil print
- Compatible with all solderable finishes

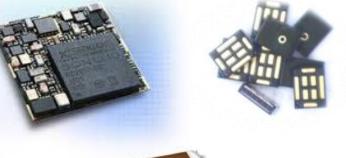
Will not remelt below 400°C after reflow

- Step soldering (all lead-free)
- High operating temperature (>250°C, lead-free)

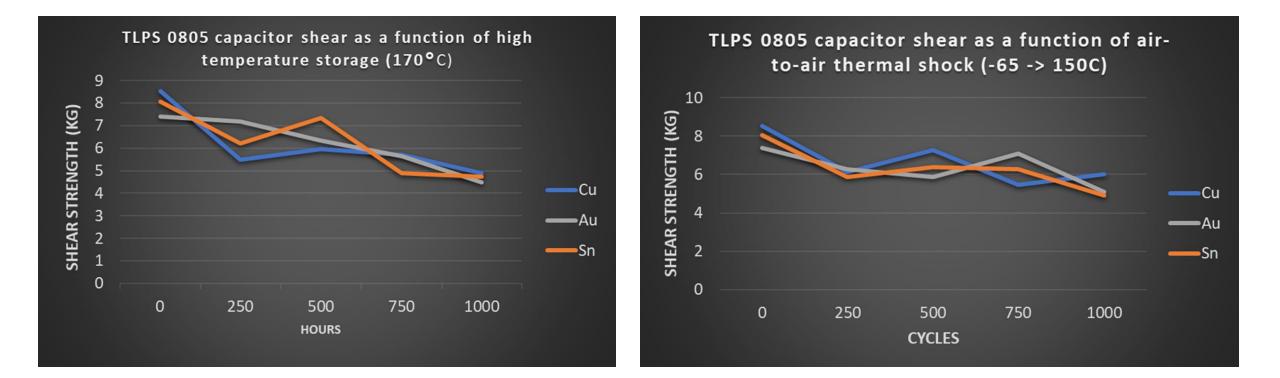
Shape maintained though processing

- Enabling higher density assembly


Reduced risk of shorting


- No tombstoning
- Comparable electrical, thermal and mechanical properties to solder

Higher fatigue resistance than solders in temp cycle

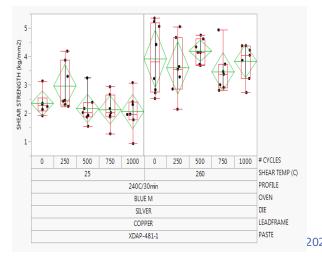

Component assembly/attach product line Uses, drivers, and advantages

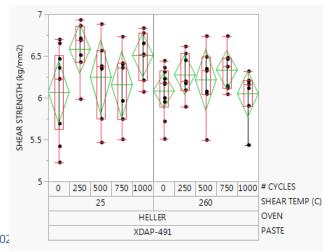
Pro	duct	CAP-476-1	CAP-823-1	CAP-824-3	APM-916-1
Target ap	oplication	Component assembly	Fine pitch component assembly	High thermal durability assembly	Dispensable component assembly
Fillar system		Sintering (Cu, Sn-alloy)	Sintering (Cu, Sn-alloy)	Sintering (Cu, Sn-alloy)	Sintering (Cu, Sn-alloy)
Viscosity	CP51 2.5rpm, kcps	55	210	190	50
Nominal particle size		<20um	<33um	<20um	<40um
Method of	Stencil Printing	0	0	0	
application	Dispensing	0			0
Volume Resistivity	(μΩ.cm)	20	18	18	18
	(kg/mm2)@25°0	4	4.2	4	3.6
Shear Strength	(kg/mm2)@260 ℃	2.5	2.5	2.5	2.5
	(kg/mm2)@325 ℃	NA	NA	NA	NA
	Au	0	0	0	0
Applicable	Ag	0	0	0	0
interface	Cu	0	0	0	0
material	Ni	0	0		0
	Sn	0	0	0	0

Performance and Reliability CAP TLPS paste surface finish compatibility

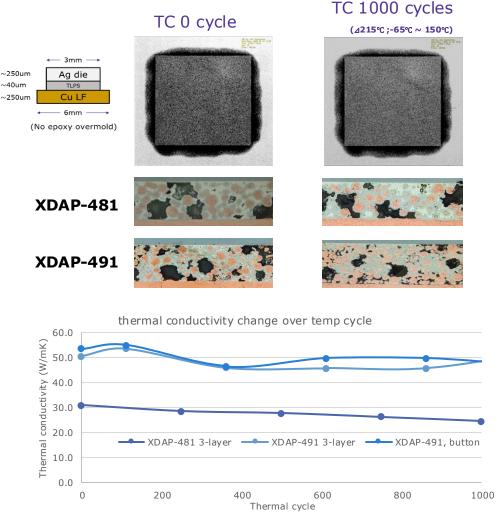
All solderable surface finishes are compatible!

Power Die Attach

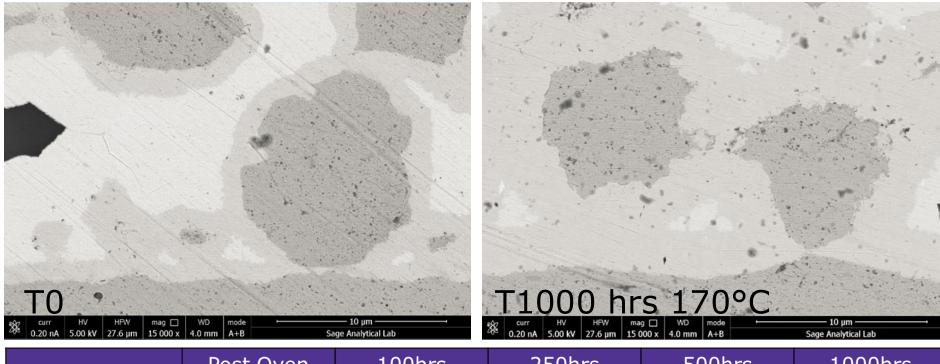

D5met TLPS Portfolio | December 2024


Die attach for power modules Product performance (DAP-481-1, DAP-491-1)

	DAP 481-1	DAP 491-1			
Target Application	 Die-attach on DBC (<10×10mm) : IGBT module Die-attach on LF (250umt) (<8×8mm) : Discrete (not including clip structure) 				
Overall Product Features	 Wide process windows Printable & Dispensable Available for Reflow and Oven profile 	High thermal conductivityPrintableAvailable for Reflow and Oven profile			
Metal Loading (wt%)	90	93			
Thermal Conductivity (W/m-K)	31	52			
Viscosity (5.0 RPM CP-51, cps)	21000	68000			
Thixotropic Index (0.5/5.0)	3.6	2			
Slump test (minimum µm gap no bridge)	200	150			
Stencil Life (hrs)	8	>8			
Die Attach Window (hrs)	6 (die on LF)	2 (die on LF)			
3x3 Au die on Cu LF X-ray void%	10%	10%			
3x3 Au die on Cu LF RT shear (kg/mm²)	3.0	5.2			
3x3 Au die on Cu LF 260C shear (kg/mm²)	4.2	5.7			


TLPS paste designs for die attach **'Thermosetting' solder paste**

- Features and Advantages
 - 1. Pb-Free Systems
 - 2. Non-loading pressure
 - 3. Stable thermal conductivity (50W/m.K)
 - 4. Wide process window, print or dispense; reflow or oven sinter
 - 5. Excellent metal bond strength to solderable/metalized die before/after thermal cycles
 - 6. No-Remelting under 400°C
- Stable Shear Strength (RT and over 260°C)



Stable microstructure with small dispersed voids

TLPS is highly stable IMC conversion occurs at the interface and through the bulk

curr HV HFW ma	s 170°C ^I g □ WD mode 4.0 mm A+B	10 µm Sage Analytical Lab	performance
250hrs	500hrs	1000hrs	
@170°C	@170°C	@170°C	

Thermal work

does not

degrade joint

	Post Oven Cure	100hrs @170°C	250hrs @170°C	500hrs @170°C	1000hrs @170°C
AVG. IMC (um)	1.475	2.043	2.119	2.733	3.384
Strength (kg/mm ²)	1.2	1.303	1.328	1.429	1.434